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Abstract
Background: Variations in air pollution exposure within a community may be associated with
asthma prevalence. However, studies conducted to date have produced inconsistent results,
possibly due to errors in measurement of the exposures.

Methods: A standardized asthma survey was administered to children in grades one and eight in
Hamilton, Canada, in 1994–95 (N ~1467). Exposure to air pollution was estimated in four ways:
(1) distance from roadways; (2) interpolated surfaces for ozone, sulfur dioxide, particulate matter
and nitrous oxides from seven to nine governmental monitoring stations; (3) a kriged nitrogen
dioxide (NO2) surface based on a network of 100 passive NO2 monitors; and (4) a land use
regression (LUR) model derived from the same monitoring network. Logistic regressions were
used to test associations between asthma and air pollution, controlling for variables including
neighbourhood income, dwelling value, state of housing, a deprivation index and smoking.

Results: There were no significant associations between any of the exposure estimates and asthma
in the whole population, but large effects were detected the subgroup of children without hayfever
(predominately in girls). The most robust effects were observed for the association of asthma
without hayfever and NO2LUR OR = 1.86 (95%CI, 1.59–2.16) in all girls and OR = 2.98 (95%CI,
0.98–9.06) for older girls, over an interquartile range increase and controlling for confounders.

Conclusion: Our findings indicate that traffic-related pollutants, such as NO2, are associated with
asthma without overt evidence of other atopic disorders among female children living in a medium-
sized Canadian city. The effects were sensitive to the method of exposure estimation. More refined
exposure models produced the most robust associations.
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Background
Although adverse respiratory health outcomes from expo-
sure to ambient air pollution are biologically plausible,
research linking exposure to asthma has been inconclu-
sive [1,2]. Recent research has emphasized the growing
contribution and heightened toxic potential of traffic-
related air pollution (TAP) near major vehicular corridors
[3], as well as significant associations between exposure to
TAP and onset of asthma [4]. Other studies have found
positive, significant associations between exposure to TAP
and adverse respiratory outcomes [5-13], while others
have reported null associations [14-16].

The inconsistencies in linking TAP and asthma may be
due to exposure measurement error in some studies,
which arise partly from the way exposures to traffic pollu-
tion are estimated and derived. These exposure estimates
include: self-reported traffic density at residence [11,12];
number of cars passing by per 24 hours on the nearest
street to a home or school [7,17,18]; distance between the
nearest street and home [8,9,16,17,19,20]; identification
of the street with highest traffic density relative to a child's
school or home [10,21]; perception of residential nui-
sances related to traffic pollution [22]; indices which com-
bine traffic and distance [14,23,24]; cumulative exposure
indices [25,26]; and estimation of pollution exposure at
the home using geographic information systems (GIS)
and land use regression models [27].

Susceptibility factors have also been suggested to contrib-
ute to these observed inconsistencies, including early life
exposure [28], duration of residence, parental asthma his-
tory, and gender [20,29]. Additionally, Douwes et al[30]
suggest there to be a growing importance of investigating
specific subtypes of asthma, namely non-atopic or non-
allergic asthma. Nystad et al[31] show increasing rates of
children with non-atopy related asthma, defined as
asthma without atopic diseases (specifically hayfever or
eczema), compared to atopy-related asthma. Ronmark et
al. [32] report different patterns of risk factors for atopic
and non-atopic asthma, defined as asthma with or with-
out at least one positive skin test for type-1 allergy. The
separation of atopic and non-atopic asthma is often not
considered in the air pollution and asthma literature, and
as non-atopic asthma is thought to contribute much of
the increased incidence of asthma, it may be accentuating
observed inconsistencies in reported results. Further to
these complexities, differences exist between the sexes,
with girls being more susceptible to asthma than boys
[20,33]; despite boys having higher prevalence rates. Age
also seems to influence the progression toward onset [34].

In this article, we examine the relationship between
within-city or 'intraurban' contrasts in air pollution expo-
sure and childhood asthma in Hamilton, Canada. Fur-
ther, we test these associations within asthmatic

subgroups stratified by the presence or absence of other
atopic diseases, gender and age to determine whether
these susceptibility factors influence the relationship
between air pollution and asthma.

Methods
Study area
Hamilton is the ninth largest city in Canada, with a pop-
ulation of over 660,000 in 2001 [35]. The city experiences
high levels of pollution exposure for a number of reasons,
including traffic and local steel manufacturing plants [36].

The city has well-documented spatial variability of air pol-
lution [37-40]. Pollution is higher in the major industrial
zone located in the northeast and generally lower in the
southern and western parts of the city. This is mainly due
to prevailing winds, the location of industry upwind of
major population areas, temperature inversions that trap
pollutants near ground level and topographical elevation
created by the presence of the approximately 100 m high
Niagara Escarpment [41] (see Figure 1).

Hamilton has been extensively studied in terms of air pol-
lution and mortality, employing ecologic analysis [42],
time-series [43,44]; and cohort study designs [39,40].
These techniques have shown that proximity to traffic and
higher exposures to ambient air pollution are significantly
associated with cardiovascular and stroke mortality rates,
but not with respiratory death [41]. Earlier studies investi-
gated the relationship between air pollution and respira-
tory health in children [45] and in the general population
[46], but both studies were inconclusive. Studies of dis-
ease prevalence have reported that Hamilton has some of
the highest asthma rates for both young adults [47] and
children [48] in Canada; however, the association of
asthma symptoms with detailed intraurban air pollution
exposures has not yet been explicitly tested.

Study population
The International Study of Asthma and Allergies in Child-
hood (ISAAC) Phase I questionnaire was administered in
1994–1995 to 6388 children who lived in or around
Hamilton [48]. A full description of the ISAAC study pro-
tocol has been discussed elsewhere [49]. Briefly, it is a val-
idated tool that uses a standardized questionnaire to
assess asthma and respiratory symptoms in children aged
6–7 and 13–14 (pre- and post-pubescent), and allows for
uniformity in comparisons across populations [34]. Sam-
pling was based on complete classes from randomly
selected schools within the region. Participation rates
were 75.1% and 68.6% for the younger and older chil-
dren, respectively [48]. From this larger sample, 1467 chil-
dren were selected, based on the geographic extent of the
pollution monitoring data available for analysis. Two age
groups were tested; those corresponding to grades 1 (ages
6–7) and 8 (ages 13–14) in Canadian schools. Parents
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filled out the questionnaires for the younger children at
home, thereby providing parental consent. The older chil-
dren completed questionnaires by themselves at school
after obtaining written consent from their parents. The
questionnaires used were focused mainly on assessing res-
piratory health status and did not include extensive infor-
mation on other risk factors. Location of residence was
recorded at the level of the 6-digit postal codes, which
supply block centroids that are positioned near the front
of residential properties.

Children that had answered "yes" to the question "have
you ever had asthma" were classified as asthmatic and a
variable was created as 'asthma ever'. The same classifica-
tion ("have you ever had ....") was applied for wheeze and
hayfever, creating 'wheeze ever' and 'hayfever ever'.
Asthma not associated with hayfever was defined as
answering "yes" to asthma ever, but "no" to hayfever ever.
Other indicators of probable atopic disease present in the
ISAAC questionnaire included the questions "have you
ever had eczema" and "have you ever had runny or
blocked nose not associated with having a cold or the flu."
Similarly, 'asthma without eczema' and 'asthma without
runny nose' variables were created for further sensitivity
analyses. Variables indicating the presence of 'wheeze
ever' and 'current wheeze' (wheeze in the last 12 months)
with and without atopy related symptoms were also cre-
ated. Specific testing for atopy (skin allergen prick tests or
serum immunoglobulin E (IgE) levels) was not performed
in the Phase I ISAAC study. Hence, to examine the possi-
bility of different effects in atopic and non-atopic asthma,
these symptom-related variables were created.

Air pollution exposure models
We estimated exposure to air pollution using four tech-
niques. First, we created buffers of 50 m and 100 m from
major roadways to proxy for traffic pollution exposure

based on the DMTI spatial data coverage (DMTI Spatial,
Markham, ON). Children living within the specified
buffer distance from a major road were assigned the
number 1; those who did not were assigned the number
0. Second, we created pollution surfaces for particulates
(PM10), sulfur dioxide (SO2), nitrogen oxides (NOx) and
ozone (O3), using deterministic interpolators applied to
three-year averages corresponding to the time of enrol-
ment in the survey. These models were derived from
between seven and nine Ontario Ministry of the Environ-
ment (MOE) ambient fixed-site pollution monitors
located in Hamilton, depending on data availability for
the period coinciding with the ISAAC study. Specifically,
we derived Theissen polygons, bi-cubic spline and inverse
distance weighted (IDW) interpolation techniques [50]
for each of the four pollutants.

The third pollution surface estimation method was based
on a detailed network of 107 monitoring locations
deployed throughout Hamilton for a two-week period in
2002. Passive NO2 Ogawa monitors (Ogawa & Co., USA)
were set up in duplicate at each location. Every monitor
had two filters, yielding four readings per site. Values at
each of the 107 locations were based on an average of
these four readings. After field retrieval and data cleaning,
100 readings remained available for analysis. Pollutant
concentrations from these locations were interpolated to
estimate the most likely value of NO2 occurring between
the monitored locations. We used kriging, an optimal sto-
chastic interpolation method that supplies the best linear
unbiased estimate of the variable of interest for this type
of exposure calculation [50]. While a temporal difference
exists between data collection of the ISAAC study and
NO2 observations, the spatial trends of pollution in Ham-
ilton between 1995 and 2002 have been relatively consist-
ent, based on annual air quality reports [39]. The stability
of the spatial distribution of pollution with Hamilton is
also discussed below in terms of the land use regression
model.

Our fourth assessment method was a NO2 surface created
using a land use regression (LUR) model, explained else-
where in detail [51,52]. Based on the same 100 readings
from the passive monitors mentioned above, the LUR
model [53] was implemented to assess the land use char-
acteristics, transportation, population and physical geog-
raphy variables most strongly associated with ambient
NO2 concentrations. Our final seven-variable model
explained 76% of the variation in the measured NO2. Var-
iables included: traffic density, open land use within 500
m, industrial land use within 200 m, presence of a high-
way within 50 m, presence within 1000 m from down-
town industrial core, presence downwind from a
highway, and distance to the lake. The variables represent-
ing traffic density, industrial land use, meteorology, and
other activities thought to predict traffic pollution levels

Locator Map of HamiltonFigure 1
Locator Map of Hamilton.
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had coefficients with the expected sign. Predicted values
were used to generate a detailed exposure surface that cap-
tured the small-area variability of pollution within the
city. Cross validations indicated that the LUR model per-
formed well, demonstrating good predictions for sites not
used in model calibration and stable coefficients when
assessed with the Chow test [54]. Our seasonal analysis
suggested the model was capable of predicting spatial var-
iation within the city for different seasons, probably due
to spatial patterns of pollution that remain stable over
time [51].

Confounding variables
Confounding in air pollution and health research occurs
when the pollution exposure and the health outcome of
interest are correlated and can lead to spurious observed
associations. Variations in health outcomes are due to
both individual and area, or place-specific, characteristics
[55]. Diez-Roux [56] categorized these effects within eco-
logical studies as compositional and contextual con-
founders. Compositional confounders include those
affecting health as a function of the underlying popula-
tion characteristics (e.g. proportion of smokers). Contex-
tual or area effect variables affect health through the social
and economic context of populations. For example, social
deprivation in the neighbourhood of residence could
exert effects on individual health through a variety of
mechanisms [57].

In our analysis, we had limited individual level data on
confounders, so we used neighbourhood proxies where
available and appropriate. Specifically, we used variables
shown to affect the air pollution and health association in
previous studies. These included income [39] and dwell-
ing value [37], both of which were obtained from the
1996 Census of Canada with information available at the
census tract level. The percentage of smokers [39] has also
been shown to affect air pollution and health associa-
tions. Our passive smoking data was extracted from a sec-
ondary source: a similar asthma study conducted in 1995
among 3369 young adults (aged 20–44 years) at the same
time as the ISAAC study, where adults were asked about
smoking habits [47]. Sex-specific percentages of 'ever
smokers' were calculated and continuous contours were
created using the Distance Mapping and Analysis Program
(DMAP) point interpolation program [58]. As maternal
smoking has been shown to have stronger effects on child-
hood asthma than paternal smoking [59], children were
assigned the smoking value of the female smokers at the
contour closest to their residential location.

As our last compositional variables, we used two proxy
variables that account for the state of housing and poten-
tial exposure to mold: (1) percent of houses built pre-
1946 (hereafter referred to as 'percent old houses'); and

(2) rate of repair of housing, intended to relate to older
home conditions and therefore the increased occurrence
of mold [60] and damp conditions [61]. Both of these
proxy variables have shown to affect respiratory health.
These data were also available from the 1996 Census of
Canada.

Our contextual variable was developed from a deprivation
index (DI) – a previously created variable shown to be
associated with cardiovascular mortality in Hamilton
[41]. A similar index was associated with mortality in
Quebec, Canada [62]. Social deprivation is a multidimen-
sional construct and relevant variables are often collinear.
Because the variables are intercorrelated, and each varia-
ble cannot be represented separately, principal compo-
nents analysis (PCA) is often used to extract the significant
dimensions [63]. PCA was run on average income, unem-
ployment rate and low education variables. The DI was
created from extracting the first principal component, rep-
resenting about 80% of the variation in all three variables.
The higher the score of the DI, the less favourable was the
combination of income, education and employment.

To be included as a true confounding variable rather than
an effect modifier, the contextual and compositional var-
iables created had to fulfill three requirements. First, they
had to be associated with asthma. Second, variables also
had to be associated with pollution exposure. Third, their
inclusion in the multiple variable analyses had to change
the regression coefficient of the model of asthma related
to pollution exposure by more than 10% (see [64] for a
similar approach).

Statistical analyses
To understand the inter-relationships among predictor
variables, a correlation matrix was created for the individ-
ual pollutants and potential confounders. We conducted
bivariate logistic regressions between the dependent vari-
ables (health outcomes) and all of the independent varia-
bles previously discussed. Significant associations
between the pollutants and health outcomes were
retained and tested further in trivariate logistic regressions
with the contextual and compositional variables. Once
the confounding variables were identified, they were
entered with the pollution exposures in a series of multi-
ple regression models. Sensitivity analyses conducted for
the alternative atopy indicators also used the logistic mul-
tiple regression models. We attempted to control for the
influence of other confounders with spatial patterns
within our data by spatially de-trending to remove the
autocorrelation. We did this within a generalized linear
model (GLM) structure [65] by applying a natural spline
smoother as a sensitivity test for confounding. These anal-
yses were conducted using SPSS version 11.0.1 (SPSS Inc.,
Page 4 of 13
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Chicago, IL) and S-PLUS 2000 (Mathsoft Inc, Seattle,
WA).

Results
The prevalence rates of all asthma and asthma without
hayfever are shown in Table 1. With an overall prevalence
of 18%, boys had higher prevalence for asthma (21%)
than girls (15%), consistent with other Canadian studies
on the life course of asthma [66]. The difference between
the two sexes was more apparent in the younger age
group, with boys having higher rates of asthma without
hayfever than girls. Prevalence rates for asthma ever were
similar to the larger study from which our population was
drawn, but our sub-population had slightly lower rates of
wheezing ever for the younger children (data not shown).

In total, sixteen exposure surfaces were created. These
included the surfaces derived using the Theissen polygon
method for O3, NOx, and SO2, and a splined surface devel-
oped for PM10. Figures 2, 3 and 4 show the surfaces for
PM10Spline, O3Theissen and NO2LUR. All surfaces, except
O3, showed a pollution gradient within the city that fol-
lowed the expected trend of higher intensities in the
northeast near the industrial core, and decreasing pollu-
tion levels towards the outskirts of the city. The O3 surface
followed the opposite pattern, with lower levels in the
downtown area and higher levels at the edges of the city.

The different pollution metrics reflect both different
sources and different approaches to modelling exposure.
The SO2Theissen polygon surface indicates the presence
of point-source industries in the northeast end of down-
town Hamilton. The Theissen polygon surfaces created
discrete categories of pollution levels equal to the meas-
urements obtained at the fixed MOE sites. As these are not
smooth continuous surfaces, they may not accurately
reflect the real variation of pollution – an inherent una-
voidable characteristic of creating such polygons around
the monitoring locations [67]. The O3Theissen surface
had a similar categorizing effect. The PM10Spline, on the
other hand, may have over-smoothed the true variation of
pollution, again, due to the nature of this interpolation
technique. Both the kriged and LUR NO2 surfaces were
based on a denser network of monitors within the city.
With the large variation in concentrations measured by
the monitors, the kriging methodology was not able to
capture the full spatial variation without incorporating
some unavoidable errors included in the estimation. The
highest errors, however, tended to be outside the area
encompassing the children's residence locations. Visually,
the NO2LUR surface appeared most heterogeneous, with
the highest variation occurring around roads and densely
populated areas of the lower city.

The concentrations of estimated pollutants were then
assigned to the postal code of each child's residential

address. Pollution exposures in each group were quite
similar for most pollutants (Table 2) with the exception of
smaller ranges of PM10 exposure for girls and NO2LUR
exposures for boys. A correlation matrix was constructed
for the independent variables (see Additional file 1). The
pollutants had low correlations, except for O3 with NOx,
which were inversely related due likely to the scavenging
effect of ozone by local sources of NO [68]. As expected,
the two measures of NO2 were correlated. The DI had a
weak positive correlation with the pollutants, except with
O3 where there was a weak negative correlation. Dwelling
value and average income were highly correlated (r =
0.73) and followed very similar patterns in their correla-
tions with pollutants. The rate of repair and percent old
houses were also highly correlated (r = 0.72). To avoid
introducing multicollinearity, only one of the two varia-
bles in each correlated set was retained for the multivari-
ate analysis. DI and smoking did not have strong
associations with the other variables, and thus were kept
for further testing in the multiple regression models.

Bivariate logistic regression revealed positive, but insignif-
icant, associations between pollution exposures and
asthma outcomes when the whole population was tested.
A detailed table is available in the online appendix (see
Additional file 2). The odds ratio (OR) for asthma with
NO2LUR, for example, was 1.02 per ppb (95% CI, 1.00–
1.04) but the association was insignificant. Samples were
stratified based on literature suggesting that differences
exist between the sexes [69], that rates differ by age, and
that asthma and asthma without hayfever have different
risk factors [31]. When testing the predictive potential of
atopy related status for asthma, a positive association was
found; namely that children with hayfever symptoms
were more likely to have asthma than those without hay-
fever symptoms (OR = 3.03; 95%CI, 2.20–4.17). After
testing interactions between the pollutants, atopy and
subgroups, we found effects suggestive of an interaction
between hayfever and pollutants in all girls for NO2LUR
(p = 0.156). The power to test for interactions in epidemi-
ological studies is often poor, resulting in researchers
missing important interactions due to lower power [70].
As noted by Selvin [71], relaxing the type 1 error p value
from the traditional 5% to 20% is a common approach in
epidemiological studies, one that can allow for interac-
tion tests in studies that are not powered for effect modi-
fication. In this instance, we had substantive reasons to
test for interaction, and the sub-group analysis indicates
that girls are more susceptible than boys. Given this, the
literature of subgroup interaction and the empirical evi-
dence in our data, we subsequently stratified the sample
into subgroups by age, sex, and by age and sex. It is impor-
tant to note that all subgroups were investigated; however,
due to the large number of tested associations between the
subgroups, and the voluminous resulting tables, only the
significant results for the susceptible groups are included
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in this paper to avoid detracting from the main findings
by listing tables of insignificant effects.

Tables 3, 4, 5 and 6 show the associations for the stratified
analysis conducted for the non-atopy related asthma pop-

ulation within the subgroups. Asthma without hayfever
was associated with NO2LUR for all girls and older girls.
We also ran trivariate logistic regressions on the signifi-
cant associations identified in the bivariate tests for
asthma without hayfever (see Table 7). The effects of pol-

Table 1: Prevalence of asthma ever, non-atopy related asthma ever without hayfever ever, and hayfever ever

Asthma Asthma without hayfever Hayfever

N n % n % n %

All children 1467 261 18 185 13 220 15

Girls 729 106 15 76 10 101 14

Boys 738 155 21 109 15 119 16

Younger children 918 115 13 123 13 90 10

Older children 549 106 19 62 11 130 24

Younger girls 465 58 12 47 10 38 8

Younger boys 453 97 21 76 17 52 11

Older girls 264 48 18 29 11 63 24

Older boys 285 58 20 33 12 67 24

PM10 Spline surfaceFigure 2
PM10 Spline surface.

O3Theissen surfaceFigure 3
O3Theissen surface.
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lutants remained robust. NO2LUR retained significance
with asthma without hayfever in all girls for each con-
founding variable. For the subpopulation of older girls,
the odds ratios were generally stronger after adjustment
for potential compositional and contextual variables. We
used these regressions to test for the effect of the compo-
sitional and contextual variables on the percent change in
the regression coefficients of the models. Testing the most
robust group of associations (NO2LUR and all girls) iden-
tified the deprivation index (DI) and rate of repair as the
variables that reduced the regression coefficient by more
than 10%. These were retained as the confounding varia-
bles for the multiple variable logistic regressions.

We also tested the effect of co-pollutants on our models
(see Table 8). For the populations of all girls and older
girls, the effect of NO2LUR was larger after adjusting for

SO2, PM10 and O3. Calculated for a 1-unit increase in
NO2, the odds ratio for asthma without hayfever among
all girls was 1.46 times (after controlling for PM10, SO2,
O3, DI and rate of repair), and 2.71 times greater among
older girls.

Sensitivity analyses were conducted with a generalized lin-
ear model (GLM) with a natural spline smoother [65]. The
coefficient changed slightly from 0.128 to 0.130 when the
smoother was applied to 10 degrees of freedom (df), and
to 0.129 for 20 df (p < 0.05). Using the natural spline
smoother, increasing spans indicated a more localized
analysis. This sensitivity analysis lends further support to
the notion that confounding probably does not bias the
coefficients as the effects were robust.

For further sensitivity analysis, we tested the alternative
indicators of atopic conditions (eczema and runny nose
not associated with a cold) to assess whether the selection
of indicator made a difference in the air pollution and
asthma relationship. The results were sensitive to the
selection of other indicators of atopic conditions, as they
were positive for the most part, but were no longer signif-
icant.

We also assessed the sensitivity of the association of
wheeze ever and current wheeze with the same symptom
indicators of atopic conditions, and the pattern of effects
was similar to that observed for asthma. After controlling
for confounders and copollutants, NO2LUR remained sig-
nificant with wheeze ever without hayfever (OR = 1.13,
95%CI, 1.01–1.23) and current wheeze without hayfever
(OR = 1.28, 95%CI, 1.06–1.55) for all girls (OR = 1.15,
95%CI, 1.00–1.31) and older girls (OR = 1.35, 95%CI,
1.10–1.66).

NO2LUR surfaceFigure 4
NO2LUR surface.

Table 2: Average and range of pollution exposures

All subjects Boys Girls

Pollutants+ Average Range Average Range Average Range

PM10Spline 20.90 26.98 20.88 26.98 20.92 20.10

NOx Theissen 31.77 20.91 31.69 20.91 31.85 20.91

SO2 Theissen 5.81 6.04 5.88 6.04 5.74 6.04

O3Theissen 20.12 4.30 20.10 4.30 20.15 4.30

NO2Kriged 15.36 8.93 15.37 8.93 15.36 8.85

NO2LUR 14.84 16.08 14.79 15.55 14.90 12.52

+ Particulate matter in micrograms per cubic meter; gaseous pollutants in parts per billion.
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Discussion
There were no significant associations between any of the
exposure estimates and asthma in the whole population,
but large effects were detected the subgroup of children
without hayfever (predominately in girls). More specifi-
cally, after controlling for confounders we observed signif-

icant associations between NO2LUR and non-atopy
related asthma in all girls and older girls. The NO2LUR
surface provided the only robust associations with all girls
and older girls after running the co-pollutant models and
GLM sensitivity analyses. Sensitivity analyses for the defi-
nition of respiratory symptoms without hayfever showed

Table 3: Odds ratios of bivariate associations between asthma without hayfever and both NO2LUR and confounding variables within 
subgroups of all, younger and older children+

All children Younger children Older children

Exp(B) 95% CI Exp(B) 95% CI Exp(B) 95% CI

Bivariate Associations

NO2LUR 1.035 (0.957–1.120) 0.989 (0.889–1.101) 1.100 (0.980–1.234)

Avg Income 0.780 (0.479–1.268) 0.879 (0.470–1.641) 0.591 (0.270–1.296)

Dwelling Value 0.959 (0.905–1.016) 0.971 (0.903–1.043) 0.932 (0.844–1.029)

Rate of repair 1.008 (0.968–1.050) 0.983 (0.930–1.039) 1.012 (0.950–1.077)

Older house 1.002 (0.996–1.009) 0.999 (0.991–1.007) 1.005 (0.996–1.015)

Smoking 1.013 (0.987–1.041) 1.002 (0.970–1.035) 1.009 (0.967–1.052)

DI 1.029 (0.962–1.102) 1.020 (0.925–1.125) 1.047 (0.946–1.160)

**p < 0.05,* p < 0.1
+ calculated for a 1-unit increase in pollutant

Table 4: Odds ratios of bivariate associations between asthma 
without hayfever and both NO2LUR and confounding variables 
within subgroups of all girls and boys+

All girls All boys

Exp(B) 95% CI Exp(B) 95% CI

Bivariate Associations

NO2LUR 1.137** (1.012–1.278) 0.967 (0.868–1.078)

Avg Income 0.945 (0.465–1.919) 0.658 (0.335–1.294)

Dwelling Value 0.946 (0.864–1.035) 0.969 (0.898–1.045)

Rate of repair 1.043 (0.983–1.108) 1.004 (0.952–1.060)

Older house 1.009 (0.999–1.020) 1.000 (0.992–1.008)

Smoking 1.044 (0.995–1.096) 1.017 (0.982–1.053)

DI 1.049 (0.952–1.156) 1.025 (0.935–1.123)

**p < 0.05,* p < 0.1
+ calculated for a 1-unit increase in pollutant

Table 5: Odds ratios of bivariate associations between asthma 
without hayfever and both NO2LUR and confounding variables 
within subgroups of younger girls and boys+

Younger girls Younger boys

Exp(B) 95% CI Exp(B) 95% CI

Bivariate Associations

NO2LUR 1.072 (0.903–1.272) 0.941 (0.821–1.078)

Avg Income 1.209 (0.475–3.075) 0.724 (0.310–1.688)

Dwelling Value 0.984 (0.875–1.106) 0.970 (0.885–1.062)

Rate of repair 0.960 (0.875–1.053) 0.991 (0.924–1.063)

Older house 1.000 (0.988–1.013) 0.997 (0.987–1.007)

Smoking 0.982 (0.932–1.034) 1.013 (0.972–1.055)

DI 1.063 (0.908–1.245) 0.998 (0.882–1.130)

**p < 0.05,* p < 0.1
+ calculated for a 1-unit increase in pollutant
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that using wheeze instead of asthma as a respiratory
health effect still revealed similar findings; however, if
alternative indicators of atopic disease (eczema or runny
nose without a cold) were used, the effects were not
robust.

The sizes of the effects found in the asthma without hay-
fever models are significant. For older girls, the OR is 3.46
(95% CI, 1.19–10.07) for the NO2LUR (calculated for
mean-minimum pollution). Taking the exposure coeffi-
cients from the co-pollutant models brings the estimates
closer to OR = 2.98 (95% CI, 0.98–9.02) for older girls
and to OR = 1.85 (95% CI, 0.92–3.73) for all girls using
the same exposure contrast. The high collinearity between
the pollutants probably contributed to the wider confi-
dence intervals in the co-pollutant models. An analysis
among a sub-sample with home-based exposure measure-
ments from the Southern California Children's Health
Study (CHS) revealed an association between asthma
prevalence and home and outdoor NO2 of OR = 1.83
(95% CI, 1.04–3.22) per increase of one IQR (5.7 ppb) in
exposure [72]. Thus, while both studies observed similarly
sized effects, our effects were only within the asthma sub-
group without hayfever.

Other researchers have also commented on the relevance
and importance of non-atopy related respiratory symp-
toms. Heinrich and colleagues [73] evaluated TAP expo-
sure using self-administered subjective questionnaires
assessing traffic intensity in a population of 6896 adults.
High traffic intensity increased the risk for non-allergic
asthma, but not for atopic symptoms including allergic
sensitization. Non-allergic asthma in this study was iden-
tified as having current asthma but a negative screening
assay for specific sensitizations to mite, cat, dog, pollen
and fungal allergens. Douwes et al. [30] highlighted the
importance of investigating non-allergic asthma, as aller-

Table 6: Odds ratios of bivariate associations between asthma 
without hayfever and both NO2LUR and confounding variables 
within subgroups of older girls and boys+

Older girls Older boys

Exp(B) Exp(B) Exp(B) 95% CI

Bivariate Associations

NO2LUR 1.198** (1.019–1.408) 1.007 (0.843–1.204)

Avg Income 0.718 (0.244–2.117) 0.472 (0.152–1.464)

Dwelling Value 0.894 (0.772–1.034) 0.966 (0.843–1.108)

Rate of repair 1.062 (0.976–1.156) 1.025 (0.941–1.117)

Older house 1.013 (0.999–1.028) 1.005 (0.990–1.021)

Smoking 1.056 (0.983–1.134) 1.036 (0.969–1.106)

DI 1.032 (0.900–1.183) 1.073 (0.932–1.234)

**p < 0.05,* p < 0.1
+ calculated for a 1-unit increase in pollutant

Table 7: Odds ratios of trivariate regressions between asthma without hayfever, NO2LUR and confounding variables within subgroups 
with significant bivariate associations+

All girls Older girls

Exp(B) 95% CI Exp(B) 95% CI

Trivariate Regressions

NO2LUR 1.137** (1.012–1.278) 1.198** (1.019–1.408)

+ Avg Income 1.142** (1.014–1.288) 1.109 (0.935–1.237)

+ Dwelling Value 1.127* (0.989–1.285) 1.174 (0.964–1.429)

+ Rate of Repair 1.163** (1.019–1.327) 1.178* (0.980–1.417)

+ Older house 1.139* (0.989–1.311) 1.155 (0.948–1.406)

+ Smoking 1.145** (1.011–1.297) 1.170 (0.967–1.416)

+ DI 1.152** (1.001–1.326) 1.326** (1.056–1.666)

**p < 0.05,* p < 0.1
+ calculated for a 1-unit increase in pollutant
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gic asthma contributes to approximately 50% of asthma
cases; thus, much of the increase in asthma incidence may
been attributed to non-allergic asthma. Romanet-Manent
and colleagues' [74] estimation of the contribution of
non-allergic asthma is slightly lower, at 10–30% of asth-
matics. Clinical differences between atopic and non-
atopic asthma were initially identified by Rackeman et al.
[75] to include key factors such as gender, increasing age,
increased severity of lung function, and chronic rhinosi-
nusitis. Other recent studies support this earlier differenti-
ation of asthma, placing increasing emphasis on the
genetic investigations of each subtype [76].

Douwes et al. [30] also hypothesize that exposures to bac-
terial endotoxins and air pollutants may induce non-aller-
gic or non-atopic asthma. Nystad et al. [31] suggest that
increases in exposure and adjuvant factors may be con-
tributing to the asthmatic response without triggering
atopic symptoms, such as hayfever and eczema. Non-
allergic asthma is generally associated with increased neu-

trophil and interleukin-8 levels [77], but the biological
mechanisms in which NO2 causes the non-atopic effects
to occur are not as clear. Particulate pollution has shown
to induce neutrophilic air inflammation [78]. Seaton and
Dennecamp [79] propose that strong correlations
between NO2 and ultrafine particles (UFP = particulate
matter less than 0.1 micrometre in diameter) may explain
why NO2 would appear significant in health studies.

In the most stringent analysis controlling for confounders
and co-pollutants, effects were observed in all girls and
older girls and only for the NO2LUR model, a result con-
sistent with recent findings from the CHS cohorts in
Southern California [20]. Female sex has shown to
increase the risk of a non-allergic type of asthma in an
adult population [74] although no mechanism for this
difference was suggested. Gold et al. [80] have suggested
that gender differences in asthma rates might be due to
differences inherent in the mechanical properties of the
lung and inflammatory responses. Alternatively, Venn et
al. [81] proposed that hormonal changes occurring in
early puberty may affect prevalence rates, as well as differ-
ential exposures to triggers for wheeze or asthma, such as
smoking. Berhane et al. [82] have found that duration and
age of onset of asthma differs between the sexes, thus hav-
ing differential impacts on lung function. There may also
be additional factors influencing exposure times to pollu-
tion levels that we were not able to account for in this
study.

There are limitations in this study that warrant comment.
We had few individual-level covariate data for the chil-
dren; thus, we created proxies for true individual factors
by the use of information available at the census tract
level. While contextual level data is important [83], lack of
control for the individual factors, such as smoking at
home, which has shown to impact the respiratory health
of children, may have biased our results[16,84]. The sen-
sitivity analysis with the GLM indicated that some con-
founding might have remained, possibly due to
individual level factors with spatial attributes not cap-
tured within our proxy variables. The use of the GLM
model has, however, reduced this possibility as the
removal of spatial structures in the data reduces residual
confounding.

Non-atopic asthma is widely-accepted to be identifiable
from the absence of positive skin prick tests for IgE medi-
ated sensitizations to common allergens which include
dust mites, pet and particular foods [30]. In the absence of
this objective evidence relative to atopic indicators, we
had to rely on associated symptoms. Upton et al. [85] sug-
gest that clinicians and epidemiologists often use other
allergic manifestations such as hayfever to identify atopy
when the skin test data is unavailable; indeed they use that

Table 8: Co-pollutant models for asthma without hayfever, 
controlling for DI and rate of repair+

All girls Older girls

Exp(B) 95% CI Exp(B) 95% CI

NO2LUR 1.162** (1.000–1.350) 1.289** (1.017–1.634)

SO2Theissen 1.163 (0.953–1.419) 1.260 (0.832–1.910)

NO2LUR 1.144* (0.982–1.331) 1.287** (1.008–1.643)

PM10Spline 1.063 (0.969–1.666) 1.058 (0.918–1.219)

NO2LUR 1.171** (1.004–1.366) 1.304** (1.025–1.658)

O3Theissen 1.01 (0.821–1.241) 0.951 (0.685–1.318)

NO2LUR 1.146* (0.978–1.334) 1.271* (0.992–1.627)

PM10Spline 1.045 (0.943–1.158) 1.044 (0.891–1.225)

SO2Theissen 1.135 (0.912–1.142) 1.246 (0.802–1.934)

O3Theissen 1.005 (0.802–1.259) 0.998 (0.691–1.440)

**p < 0.05,* p < 0.1
+ calculated for a 1-unit increase in pollutant
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same definition to identify 20 year intergenerational
trends in prevalence of asthma and hayfever. They do,
however, emphasize that the difference between atopic
and non-atopic asthma cannot be validated solely on the
presence or absence of hayfever. Ronmark et al. [32]
defined atopic asthma as asthma with at least one positive
skin prick allergy test, while Romanet-Manent et al. [74]
defined this as allergic asthma. To avoid adding to these
differences and complications, we chose to report our out-
come as asthma without hayfever, rather than non-atopic
or non-allergic asthma, and acknowledge the fact that we
cannot be certain of the atopic/non-atopic difference with
the available data.

Since the ISAAC study took place in 1994 and 1995, and
the monitoring for the kriging and LUR modelling was
conducted in 2002, temporal discontinuity exists between
the health outcomes and both of our NO2 surfaces. In
spite of this potential limitation, research shows that there
has been little change in pollution levels within this time
period, and, more importantly, that the spatial variation
of pollution has not changed substantially from 1995 to
2002 [42]. Hamilton's distinct topography (especially the
Niagara Escarpment), downtown industrial core, and pre-
vailing wind direction contribute to a consistent spatial
pattern of pollution that has long been known to decrease
from the industrial core outwards to the rest of Hamilton
[86]. Similar to European findings [87], although pollu-
tion levels may fluctuate, the spatial pattern of NO2
appears consistent over time.

Conclusion
We found significant associations between exposure to
modeled NO2 and asthma without hayfever outcomes in
children living in Hamilton. Girls with asthma without
hayfever, and particularly older girls, were most suscepti-
ble to the effects of NO2 or a closely associated co-pollut-
ant. The effects were sensitive to the method of exposure
estimation, and more refined exposure models produced
the most robust associations. Given the potential role of
non-atopic asthma, further studies should include objec-
tive determination of atopic status using skin allergy tests
or serum IgE levels. Since NO2 may proxy for other pollut-
ants that can cause adverse health outcomes such as
ultrafine particles [79], further research is needed on the
identification and measurement of which pollutants may
be associated with the observed effects.
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