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Epidemics of overt toxicity 
following widespread 
environmental contamination 

from commercial toxins heralded 
the discovery of children’s enhanced 
vulnerability to lead, methyl mercury, 
polychlorinated biphenyls (PCBs), 
and tobacco [1,2,3,4,5] (Box 1). Over 
the past three decades, researchers 
have found that remarkably low-level 
exposures to these toxins are linked 
with less overt symptoms of toxicity—
intellectual impairments, behavioral 
problems, spontaneous abortions, or 
preterm births [6,7,8,9,10,11,12,13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,
28,29,30,31,32,33,34,35,36,37,38,39,40]. 
Moreover, there is emerging evidence 
that decrements in intellectual abilities 
and low birth weight linked with lead 
or tobacco are, for a given increment 
of exposure, greater at lower levels 
than those found at higher levels 
[10,41,42,43]. 

The consequences of exposure to 
many other chemicals or mixtures 
of chemicals, such as insecticides—
chemicals oftentimes specifi cally 
designed to be toxic—are largely 
unknown [33,34,35,44]. Many of these 
chemicals or their metabolites are 
routinely found in the blood and body 
fl uids of pregnant women and children 
[45]. 

Children’s Vulnerability to 
Environmental Toxins
The developing fetus and young child 
is particularly vulnerable to certain 
environmental toxins [46,47,48,49,50]. 
Critical neurodevelopmental processes 
occur in the human central nervous 
system during fetal development and 
in the fi rst three years of life. These 
processes include cortical functional 

differentiation, synaptogenesis, 
myelination, and programmed 
apoptosis [46]. 

Children’s exposure to 
environmental toxins is insidious. 
Environmental toxins covertly enter 
a child’s body transplacentally during 
fetal development or by direct ingestion 
of house dust, soil, and breastmilk 
and other dietary sources during early 
childhood [51,52,53,54,55,56]. Our 
ability to directly measure the actual 
levels of environmental chemicals in 
human tissues and body fl uids using 
biologic markers (biomarkers) enables 
scientists to more effectively link 
exposures to environmental toxins with 
disability or disease [57]. 

Despite our increased knowledge 
of the toxicity of environmental 
chemicals, testing for developmental 

neurotoxicity (DNT) and reproductive 
toxicity is rarely done. DNT testing 
uses  animal experiments to provide 
information on the potential functional 
and morphologic toxicity to the fetal 
nervous system that results from the 
mother’s exposure to toxins during 
pregnancy and lactation. Paradoxically, 
DNT testing of a chemical is seldom 
requested, and then typically requested 
only if there is pre-existing evidence 
that it is neurotoxic. 
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Box 1. Poisoning following 
Widespread Environmental 
Contamination from 
Commercial Toxins
• Lead: One hundred years ago, an 
epidemic of lead poisoning was 
described among children who ingested 
leaded house paint [2,3]. The children 
developed anemia, encephalopathy, 
paralysis, and blindness. 

• Methyl Mercury: In the 1950s, in the 
Japanese fi shing village Minamata 
Bay, which was contaminated with 
methyl mercury, children developed 
cerebral palsy, limb defects, and mental 
retardation [4]. 

• PCBs: In Taiwan and Japan during the 
1960s and 1970s, the ingestion of PCB-
contaminated rice bran oil by pregnant 
women led to fetal wasting and cola-
colored, dull, apathetic children [5].

• Tobacco: During the past century, 
widespread tobacco use has led to an 
epidemic of undersized, premature 
babies and children with repeated bouts 
of wheezing or asthma [6,7,8,9,10]. 
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The Prevalence of Diseases 
and Disabilities Linked to 
Environmental Toxins
Based on parental reports, one in six 
United States children has one or 
more developmental disabilities, from 
a subtle learning disability to overt 
behavioral or emotional disorders 
[58]. Exposures to environmental 
toxins have been linked with higher 
rates of mental retardation, intellectual 
impairment, and behavioral problems, 
such as conduct disorder and attention 
defi cit hyperactivity disorder [16,17,18,
19,20,21,22,23,24,25,26,27,30,31,36,37,
38,39,40,41,42,43,59,60,61]. 

One in ten US babies is born preterm 
and about 5% have low birth weight 
[62,63]. Preterm birth, defi ned as birth 
at less than 37 weeks of gestation, is a 
major determinant of infant mortality 
and morbidity throughout childhood 
[62,63,64]. Exposures to environmental 
toxins such as lead, tobacco smoke, 
and DDT have been linked with 
an increased risk for spontaneous 
abortion, low birth weight, or preterm 
birth [6,9,10,13,14,15,28,32,65,66]. The 
rate of occurrence for many of these 
diseases or disabilities has been rising, 
as has treatment for attention defi cit 
hyperactivity disorder and depression 
in children [62,63,67,68,69,70]. 

Multiple risk factors, including both 
genetic and environmental infl uences, 
interact in complex and often unknown 
ways to cause disease and disability in 
children. But efforts can be undertaken 
to prevent or reduce environmental 
exposures linked to disease without 
full elucidation of the underlying 
mechanism [71]. Thus, conducting 
some sort of test to identify pesticides 
and industrial chemicals that could 
cause reproductive or neurobehavioral 
toxicity before the chemical reaches 
widespread use is essential to protect 
pregnant women and children. 

Origin and Evolution of DNT Tests
The process for testing potential 
developmental neurotoxins in 
laboratory animals evolved out of a 
series of tragic epidemics. Widespread 
use of the drug thalidomide during 
the 1950s led to an epidemic of 
phocomelia, an absence or deformity 
of limbs and other congenital defects 
in children exposed in utero to the 
drug [72]. Subsequently, in 1965, the 
Food and Drug Administration (FDA) 
developed the Teratology Guidelines. 

Because thalidomide 
induced gross defects in 
rabbits but not in rats, 
these guidelines called 
for toxicity tests in two 
species. Moreover, these 
guidelines focused on 
gross abnormalities; they 
did not require testing 
for behavioral or DNT. 

Following the 
outbreak of methyl 
mercury poisoning in 
Minamata Bay (Box 
1), Japan and the 
United Kingdom added 
behavioral (DNT) 
guidelines to their 
teratology requirements 
in 1974 and 1975, respectively 
[73]. In 1978, the Collaborative 
Behavioral Teratology Study (CBTS) 
was conceived to standardize and 
evaluate methods for DNT testing 
in the US [74]. The fi nal report 
was issued in 1985, and shortly 
thereafter, Dr. Donald Kennedy, who 
was then Commissioner of the FDA, 

supported the adoption of the CBTS 
recommendations. But the FDA failed 
to implement these recommendations 
after Kennedy’s departure. 

In 1990, the US Environmental 
Protection Agency (EPA) identifi ed 
nine developmental neurobehavioral 
teratogens for both humans and 
animals (lead, PCBs, methyl mercury, 
cocaine, alcohol, phenytoin, heroin, 
methadone, and ionizing radiation) 
and developed rules for DNT testing 
in laboratory animals [49,50]. By 1991, 
the Developmental Neurotoxicity 
Test Guidelines (OPPTS 870.6300) 
had been established for use when 
submitting chemical data to the EPA 
[49]. In 1993, the National Research 
Council recommended that DNT data 
be included in the EPA’s evaluations 
of pesticides, which include classes of 
chemicals specifi cally designed to be 
toxic [44].  

The Precarious US Framework 
for Protecting Children
Despite numerous attempts to 
upgrade the regulatory system, such 

as the CBTS, the framework to protect 
children from environmental toxins is 
precarious. Under current regulations, 
manufacturers of commercial 
chemicals (excluding pesticides) are 
not required to supply any toxicity data 
before selling their products. Nor are 
pesticide manufacturers obligated to 
supply basic premarket toxicity and 
exposure data necessary to ensure 
that children will be protected from 
exposure and potential harm from use 
of those pesticides. Indeed, the vast 
majority of chemicals have not been 
tested for DNT. The most basic toxicity 
tests in animals are lacking for 75% of 
the 3,000 highest production volume 
chemicals—chemicals for which annual 
production exceeds 1 million pounds 
per year [49,75,76,77]. The US EPA 
has entered into an agreement with 
the American Chemistry Council, 
the chemical manufacturer’s trade 
association, to provide basic toxicity 
screening tests for the high-production-
volume chemicals by 2005 (http:⁄⁄www.
epa.gov/chemrtk/volchall.htm), but 
this is voluntary.

For new pesticides intended for 
use on food crops—one of the 
areas in which regulations are most 
stringent—regulations require only 
that DNT testing be evaluated for 
substances already known or suspected 
of being toxins. Further, neurotoxicity 
testing need be conducted only in 
adult animals. The EPA acknowledges 
that over 140 registered pesticides are 
neurotoxic (i.e., specifi cally designed 
to act against pests by interfering with 
neurotransmitters or other processes 
shared by mammals and insects), but 
the EPA has received DNT testing 

DOI: 10.1371/journal.pmed.0020061.g001

The US framework to protect children from environmental 
toxins is precarious 
(Photo: Earl Dotter, http:⁄⁄www.earldotter.com) 

Children’s exposure 
to environmental toxins 

is insidious. 
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using validated protocols for only nine 
pesticides [49,75,76,77]. 

There is no general requirement 
that pesticides or other chemicals 
be tested for potential DNT prior 
to their registration and use [49]. 
For pesticides—which undergo 
more premarket testing than other 
chemicals—the EPA has relied on a 
tiered system of toxicity testing. The 
assumption underlying this system is that 
positive fi ndings on earlier, more basic 
tests of neurotoxicity in adult animals 
will “trigger” the EPA to request more 
extensive testing by manufacturers, 
including tests in immature animals. 
Unfortunately, this tiered process has 
failed to result in appropriate DNT 
testing. In 1998, an internal EPA 
Toxicology Working Group concluded 
that these triggers may not be suffi cient 
to identify all chemicals that have 
the potential to produce DNT [75]. 
Moreover, this tiered system discourages 
industry from conducting testing in 
immature animals because the fi ndings 
could necessitate further costly testing 
and hinder a chemical from reaching 
the market. 

The European Framework: “REACH”
In 2001, the European Commission 
affi rmed that the European Union’s 
legislative framework did not provide 
adequate information about the 

adverse effects of chemicals on human 
health, and that when hazards were 
identifi ed the regulatory agencies were 
slow to assess risks and to introduce 
measures to reduce those risks [78]. 
Indeed, chemical manufacturers are 
not required to “prove” that a chemical 
is safe before marketing it. The 
European Commission proposed a new 
regulatory framework for chemicals, 
REACH (Registration, Evaluation, and 
Authorization of Chemicals) [78,79] 
(Figure 1). 

Under REACH, chemical 
manufacturers would have to assume 
a much greater burden for showing 
the lack of harm from use of their 
products. Specifi cally, REACH 
would require both European and 
non-European manufacturers doing 
business in Europe to submit more 
extensive toxicity data for about 
30,000 chemicals on the market, 
including reproductive and DNT 
data for those chemicals produced in 
highest quantity. Chemicals found to 
be hazardous would be subject to an 
authorization procedure to show that 
they can be used safely or that there are 
no safer alternatives. This registration 
process would not guarantee that 
chemicals are safe, but it is a step in the 
right direction. 

The American Chemistry Council has 
objections to REACH, stating that “the 

proposed regulation is burdensome, 
costly, and impractical” (http:⁄⁄www.
accnewsmedia.com/site/page.
asp?TRACKID=&VID=1&CID=
359&DID=1256). The pharmaceutical 
industry used similar objections to ward 
off regulations before the thalidomide 
epidemic ushered in requirements 
for pharmaceutical agents to undergo 
extensive premarket testing in clinical 
trials [80]. 

Limitations of Existing Animal 
Tests for DNT 
The US EPA has been slower than 
the EU to adapt to the overwhelming 
evidence that low-level exposure 
to environmental toxins can be 
harmful. The EPA continues to rely 
heavily on data from animal (toxicity) 
testing conducted on only a single 
animal species and in adult animals. 
Furthermore, EPA guidelines for 
a general developmental toxicity 
screening test typically examine 
only crude toxicological endpoints 
such as death, body weight, or organ 
dysfunction. In contrast, the DNT 
includes tests of locomotor activity, 
acoustic startle, learning, and memory. 
But, as currently designed, the existing 
tests may miss important effects such 
as mood changes, impulsive behaviors, 
and attentional problems that in 
humans have been shown to result 

DOI: 10.1371/journal.pmed.0020061.g002

Figure 1. Flow Chart Summarizing REACH (Registration, Evaluation, and Authorization of Chemicals)—the European Commission’s Regulatory 
Framework for Chemicals 
(Illustration by Sapna Khandwala, Public Library of Science, adapted from [86])
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from exposures to environmental 
toxins [24,27,30,37,40]. While these 
effects might seem subtle, they can 
seriously interfere with a child’s social 
and emotional well-being. It is also 
uncertain whether tests conducted 
under current EPA guidelines will 
detect subtle defi cits in key human 
skills such as reading.   

There are other problems with 
relying principally on adult animals 
to signal the potential for DNT 
in humans. The structure and 
development of the cerebral cortex 
of animals commonly used in these 
studies differs markedly from that 
of humans. A chemical’s effects on 
one type of animal may differ from 
its effects on other animals and on 
humans. In the case of thalidomide, 
high-dose fetal exposure had adverse 
morphologic effects on rabbits, but 
not rats; functional effects have only 
recently been described [81]. 

Although there is some concordance 
of human and animal data for the 
adverse effects of lead, mercury, 
and PCBs, intake limits for these 
compounds established exclusively 
on the basis of rodent studies have 
not been suffi ciently protective 
of human health compared with 
epidemiologic studies [47]. Indeed, 
there is compelling evidence from 
epidemiologic studies of widespread 
contaminants such as lead, tobacco, 
and PCBs that human studies are 
essential to ensure that children are 
not harmed by low levels of exposure 
[11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26,27,28,29,30,31,32,33,34,35,
36,37,38,39,40]. 

From a scientifi c standpoint, data 
from epidemiologic studies represent 
the “gold standard” for detecting 
subtle effects of environmental toxins 
on humans. But epidemiological 
studies are expensive to mount, 
diffi cult to execute, and take years 
to complete. Using observational 
studies to disentangle the adverse 
consequences of a single toxin from 
other environmental infl uences 
and to promulgate regulations is a 
diffi cult and painfully slow process. 
There is also a fi nancial disincentive 
for chemical registrants to voluntarily 
fund such studies because a positive 
epidemiological study could lead to 
stricter regulations. More importantly, 
if society continues to rely on 
epidemiologic studies to evaluate the 

toxicity of chemicals only after they are 
marketed, many children will fi rst be 
harmed. 

Steps to Protect Children from 
Environmental Toxins 
Children must be better protected 
from both new and existing chemicals 
that are known or possible toxins 
[49]. To protect children from 
existing toxins, such as lead, mercury, 
and tobacco, the US EPA and FDA 
need more authority and resources 
to regulate and reduce emissions 
and exposures. Under our current 
system, efforts to enhance regulations 
to protect children from confi rmed 
toxins are costly and protracted. 
Indeed, countless communities across 
the globe suffer from widespread 
environmental contamination. If there 
is any lesson from our experience with 
environmental toxins, it is that we need 
to identify environmental chemicals 
that are toxic before they are marketed 
or widely disseminated. 

For new commercial chemicals, 
toxicity testing in animals should be 

required before they are marketed. 
For all new chemicals, including 
pesticides, extensive premarket 
testing should be required in multiple 
animal species of both sexes and at 
different developmental stages. These 
tests should be designed to have 
adequate statistical power to detect 
subtle differences within the ranges 
of exposure that occur in human 
populations. If implemented, these 
testing requirements would represent 
a dramatic departure from existing 
regulations, while providing a powerful 
incentive for industry to develop less 
toxic chemicals. 

Toxicity testing in animals is 
essential but insuffi cient to protect 
pregnant women and children. For 
one thing, uncertainties about the 
safety of a chemical for humans will 
persist even after toxicity testing in 
animals is successfully completed. One 
additional safeguard that deserves 

further debate is whether prevalent 
environmental chemicals to which 
children could be exposed should 
undergo more extensive testing in 
human trials before they are marketed. 
If done, these trials should examine 
exposure, uptake (using biomarkers), 
and adverse effects among children 
or other populations only when the 
product is used as intended. For 
example, once animal toxicity testing 
of a residential pesticide is complete 
(including DNT and reproductive 
toxicity testing), a pesticide could 
undergo further testing in the home 
environment. Using an experimental 
group and a control group, 
researchers would compare levels of 
pesticides found in settled dust, on 
children’s hands, and in their blood, 
urine, or hair. Children would be 
followed, when indicated, to ensure 
that an excess of neurobehavioral 
problems or other relevant outcomes 
did not develop among those whose 
homes were assigned to receive the 
pesticide application.  

If such trials were undertaken, 
families would need to be fully 
informed about the purpose, potential 
benefi ts, and risks of participating. 
The trials should be conducted by 
the federal government—or other 
independent entities that do not have 
any ties to the chemical industry—and 
funded by an industry fee or tax. 
Community representatives would 
need to be involved in the review 
and approval of such trials, and 
ethical standards would need to be 
established regarding, for example, 
the role of data safety and monitoring 
boards. Many families would 
undoubtedly fi nd it objectionable 
and would choose not to participate. 
Indeed, some products might never 
undergo testing if they failed to offer 
meaningful benefi ts to families, in 
which case the product would either 
be taken off the market or never reach 
the market. 

This type of trial sounds extreme, but 
it is quite rational when compared to 
the existing approach of disseminating 
a potential toxin into children’s 
environments without any human 
data about exposure, uptake, or 
toxicity. Furthermore, under our 
existing system, families are neither 
informed nor given an option to 
decline involvement in what ultimately 
are experiments exposing millions 

The US EPA and FDA 
need more authority and 

resources to regulate 
and reduce emissions 

and exposures.
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of pregnant women and children to 
potential toxins. Thus, we need to 
thoughtfully deliberate about whether 
these types of trials can be done in 
an ethical fashion. We also need to 
have further debate about whether it 
is ethical to continue to disseminate 
chemicals of unknown toxicity into 
children’s environments or to allow 
children to continually be exposed 
to prevalent toxins, like lead, despite 
considerable evidence that they are 
toxic [82]. Too often, it is left up to a 
few investigators or community leaders 
to discover and quantify the adverse 
effects of toxins, and advocate efforts to 
reduce children’s exposure. 

Conclusion
In contrast with the EU’s proposed 
REACH program, which would 
require industry to conduct more 
tests or analyses to demonstrate that 
high-production chemicals will not 
cause harm to fetuses or children, the 
Bush administration has argued—in 
unison with the American Chemistry 
Council—that such regulations 
would harm industry [83,84]. It is 
time to acknowledge that the existing 
requirements for toxicity testing and 
regulations are inadequate to safeguard 
pregnant women and children. Until a 
formal regulatory system is developed 
to effectively screen and identify new 
and existing chemicals that are toxic to 
pregnant women and children, we are 
left to await the next epidemic to warn 
us about an environmental disaster. 
Unfortunately, by then we will have 
once again fouled our nest [85]. !
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