Optimum collectif en présence de pollution et niveau de pollution « socialement souhaitable » (1)

Mais la réalisation de l’optimum collectif ne signifie pas la disparition totale de l’externalité. Une partie du coût externe, représentée par la surface Q0ABQ1, a été supprimée, engendrant un gain social : l’externalité est dite dans ce cas « Pareto relevant ». En revanche, faire en sorte que l’émetteur diminue sa production au-delà de Q0, et donc réduise le coût externe 0AQ0 n’engendre pas un gain social, mais une perte, puisque l’on se prive d’un profit supérieur au coût externe subi. L’externalité est dite, dans ce cas, « Pareto irrelevant ». L’optimum collectif ne correspond pas à une pollution ou un dommage nuls qui, dans les hypothèses présentes, aboutirait à un niveau de production nul et empêcherait toute activité de l’émetteur (la pollution étant, par hypothèse, consécutive et proportionnelle à la production du bien). Il est le résultat d’un compromis entre les avantages tirés de cette activité et les dommages qu’elle fait subir. Le gain privé 0PxAQ0 reste supérieur au gain social 0PxA. Donc, il n’est pas socialement justifié de diminuer la production en deçà de Q0 car le profit diminuerait davantage que les coûts externes, et le bilan global serait négatif ; ainsi, ici, la pollution nulle n’est pas socialement souhaitable. C’est en ce sens que la pollution attaché à la production Q0 est considérée comme « socialement souhaitable ».

On retrouve ce résultat en raisonnant en généralisant celui-ci à l’ensemble de l’économie, pour déterminer l’optimum de pollution (ou « niveau de pollution socialement souhaitable »), ou de qualité de l’environnement. Considérons le cas des eaux superficielles et pour être plus spécifique, un plan d’eau. On postule alors une relation décroissante entre qualité et pollution. Si la pollution est très faible, on a une eau pure propre à tous les usages et ayant une forte valeur intrinsèque. Lorsque la pollution augmente, l’eau conserve une qualité élevée qui la rend en particulier potable, mais au delà d’un seuil détermine de pollution elle ne l’est plus mais le plan d’eau convient pour la baignade. A mesure que la pollution augmente les possibilités d’usage diminuent, seuls la pêche et la navigation demeurent possibles puis la navigation seule. Enfin, la charge en polluant est tellement élevé que le niveau de corrosion interdit la navigation et tout usage du plan d’eau. Une pollution décroissante implique, selon ce modèle, une augmentation de la qualité de l’environnement, donc des possibilités d’usage et par conséquent des avantages que procure le plan d’eau à la société. La relation croissante qui lie la qualité de l’environnement aux bénéfices totaux est représentée sur le graphique par une courbe à pente décroissante. Cette forme de la concavité traduit l’hypothèse selon laquelle au delà d’un niveau donné de qualité, les bénéfices n’augmentent que faiblement.

Plaçons-nous maintenant du point de vue des émetteurs de pollution. Le contrôle de la pollution ou, en d’autres termes, la réduction des émissions a un coût qui est représenté sur le graphique par la courbe des coûts totaux. Celle-ci croît avec la qualité de l’environnement et sa pente est croissante. En effet l’amélioration de la qualité est d’autant plus couteuse que l’on augmente le niveau de qualité.

Si les bénéfices et les coûts totaux en fonction de la qualité de l’environnement sont connus et sont exprimés dans le même numéraire, par exemple en euros, alors compte tenu des hypothèses sur les pentes des courbes, celles-ci se coupent en un point et un seul. Il correspond au niveau optimal de qualité de l’environnement. En effet, le surplus social, défini par la différence entre les bénéfices et les coûts, est alors maximum. Là encore, rien n’indique que la qualité doit être telle qu’il n’existe plus aucune pollution ; en effet, si une telle qualité engendre un surcoût pour le producteur, ou un bénéfice moindre pour les usagers, tel que les coûts totaux dépassent les bénéfices totaux, le surplus n’est plus maximal.

Poser une question

Plan du cours

SPIP3  Mise à jour : le 21 avril 2018 | Chartes | Mentions légales | A propos